Pcb

an interactive
printed circuit board
layout system for X11

Thomas Nau

Copying

Copyright (© 1994,1995 Thomas Nau

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANT-ABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

History

Pcb is a handy tool to develop printed circuit board layouts. It was first written for an Atari
ST in 1990 and ported to UNIX and X11 in 1994. I never had the intention to create another
professional layout system but to write a tool which supports people like me who do some
home-developing of hardware. For this reason no auto-router and/or auto-placement code
has been added.

The second release 1.2 includes menus for the first time. This hopefully makes PCB easier
to use and for that a more important tool.

Release 1.3 introduced an undo-feature for the most destructive commands, a more
straight forward action handling and scalable fonts.
Special thanks goes to:
Bernhard Daeubler (Bernhard.Daeubler@physik.uni-ulm.de)
Harald Daeubler (Harald.Daeubler@physik.uni-ulm.de)
Roland Merk (merk@faw.uni-ulm.de)
Erland Unruh (Erland.Unruh@malmo.trab.se)

who did most of the alpha and beta testing, helped to port PCB to several operating
systems and platforms and corrected several typos in the manuals.

1 Introduction

Each layout consists of several, mostly independent, objects. This chapter gives an overview
about existing types and their relation to each other. For a complete description refer to
Chapter 2 [Getting Started], page 5. You may also want to look at Chapter 6 [File Formats],
page 26. All distances and sizes are in mil (0.001 inch). The origin is in the upper left corner
of the screen, x grows to the right, y to the bottom. In contrary the y axis grows from
bottom to top if you use PostScript printouts. The sections in this chapter are sorted by
the order of appearance of the objects within a layout file.

1.1 Symbols

The top object is the layout itself. It uses a set of symbols called a font which resides at the
first logical level. Each symbol is uniquely identified by a 7 bit ASCII code. All other layout
objects share the same set of symbols. Undefined symbols are drawn as filled rectangles.

Every font file is preprocessed by a user-defined command at load-time. For details see
‘fontCommand’, Section 5.1 [Resources], page 16.

1.2 Vias

Vias are identical to the pins used by elements except that they can be removed individually.
It’s possible to assign a name to a via even if it doesn’t make to much sense. Their only
purpose is to connect layers. They should not be used for adding circuits to the layout even
if it seems to be easier than to create a new element.

1.3 Elements

Elements represent all electrical circuits of a layout. They also reside on the first logical
level like symbols which means that they are shared by all under-laying levels. Elements
are loaded from ASCII coded files very similar to the layout file itself. They are composed
of lines and arcs to define the package, two labels which define the canonical name of the
element as well as the name used in the layout, a mark to make positioning easier and pins
which also have labels. Right now it’s not possible to create SMD layouts with this kind of
elements because the pins are always connected to all layers. All parts of an element are
treated as one unit. It’s not possible to delete a single pin or break the element into pieces.
This object is also supported by two special layers, pkg. outline and pkg. pins, which are
used to toggle displaying of the package and pins.

Every element file is preprocessed by a user-defined command at load-time. For details
see ‘elementCommand’, Section 5.1 [Resources], page 16. Using m4 for example allows you to
create libraries for package definitions which are shared by all circuits. The files circuits/*
shipped with this release use this mechanism. Pcb is able to create a list of all connections
from one (or all) elements to the others or a list of unconnected pins.

1.4 Layers

Every layout consist of several layers which might be used independently or grouped together
for switching them on and off. For details see ‘fileCommand’, Section 5.1 [Resources],
page 16. Each layer is drawn in a user defined color and is identified by its name. They are

Chapter 1: Introduction 4

a kind of containers for line, polygon and text objects. The connections to other layers are
established by element pins or by vias. There is no relation between a specific layer and the
board itself. The user has to decide which layer is the solder side and which one will be the
component side. You can also use different layers for one board side to separate the power
lines from signal lines. The release 1.3 and later handles all layers in a group identical when
scanning for connections.

1.5 Lines

Lines are used for three different purposes. First to connect pins and/or vias, second to
draw a package of an element and last to draw symbols. Automatic clipping to 45 degree
lines is available. Remember, the y axis grows downwards on a X11 display and therefor
the y coordinates have a different meaning.

1.6 Polygons

It’s quiet useful sometimes to fill large areas. The only way to do so is to use polygons. Pcb
can handle all types of polygons but using a number of smaller ones improves performance
while scanning connections. Editing in form of deleting or inserting points is supported.

1.7 Text

Text objects should be used to label a layout or to put some additional information on the
board but not to identify elements (circuits) which do have their one labels (they appear in
connection lists too). The drawing direction for text objects are 0, 90, 180 and 270 degrees.
A flag determines if it should be mirrored when it is drawn.

TEXT OBJECTS CREATE COPPER LINES BUT THEY ARE NOT SCANNED FOR
CONNECTIONS.

2 Getting Started

The goal of this chapter is to give you enough information to learn how Pcb works and
how to develop your layouts to make best use of its features. All event translations refer
to the shipped application default resource file. There is probably no need to change them
except if your window manager uses some of the button events itself. Pcb will write some
information to stderr or to the logging window during its lifetime.

Get yourself a printout of this chapter and User Commands, if you haven’t done so, and
follow the examples. An example layout can be found in example/68HC11.

Start Pcb without any additional options from the distribution directory to have access
to the font file. An error message

can’t find default font-symbol-file ’FONTFILENAME’

indicates a wrong font searchpath or filename in the application resource file. Check
if your m4 support searchpaths. If not, get GNU m4. For other messages see Section A.2
[problems], page 32.

2.1 The Application Window

The main window consists of three areas:

2.1.1 The Statusline and Input-field

The statusline is located at the bottom edge of the main window. During normal operation
the status information is always visible. If a selected menu operation requires an additional
button click, the statusline will be replaced by a information message.

It displays, from left to right, the cursor position, the current values of grid with r for
relative and a for absolute mode and an optional second a for lines with any direction.
The grid information is followed by scaling, linewidth, viasize and drilling hole in mil, the
currently used buffer and the name of the layout. An asterisk which appears at the left
edge indicates that the layout has been modified.

The inputline pops up whenever user input is required. Two keys are bound to the input
field: None<Key>FEscape aborts the input, None<Key> Return finishes it successfully.

2.1.2 The Control Panel

The control panel, located at the left side of window, is used to display and change active
layers as well as the current drawing layer. If a layers hasn’t been named the label (unknown)
will be used instead.

The upper control box is used to switch layers on and off. Click None<BtnlDown> to
one or more of them. Each click toggles the setting. The layout is redrawn when the pointer
reenters the drawing area to prevent from excessive redrawing when the visibility of several
layers is changed. The currently active layer can’t be switched off. If you have already
installed some layer groups, clicking to these fields will toggle the visibility of all layers of
the same group.

The lower control box, named current, is used to change the current drawing layer. Try

None<BtnlDown> on some of the fields. Each of them is labeled with the layers name and
drawn with its color. The new drawing layer is always switched on. Try and change the

Chapter 2: Getting Started 6

current layer’s name to ABC selecting set name of layer from the File menu. Changing
the active layer is also available as IModi<Key>1..MAX_LAYER.

2.1.3 The Mode Selectors

The mode selector icons reside right at the bottom of the control panel. They are used
to select operation mode of Pcb. All of them should be self explaining. None<BtnlDown>
causes the appropriate action to be taken. The drawing modes are also available by:

None<Key>Escape reset mode

None<Key>F1 via-mode
None<Key>F2 line-mode
None<Key>F3 pastebuffer-mode
None<Key>F4 rectangle-mode
None<Key>F5 text-mode
None<Key>F6 polygon-mode

The cursor shape changes depending on the selected mode.

2.1.4 Drawing Area

The drawing area is made of a viewport widget which also includes two scrollbars. Moving
the pointer into it changes the cursor shape depending on the current operation mode. A
crosshair follows the X pointer with respect to the grid setting. Move around and watch
the cursor position displayed at the bottom. Now select a new grid from the Display menu.
The new value is updated in the statusline. Now move again and watch the difference. A
different way to change the grid is /Shift<Key>g to decrement or <Key>g to increment it.
The setting is saved together with the data. For normal, homemade layouts a value of 10
or 50 is a good setting. The cursor can also be moved with the cursor keys or, for larger
distances, by pressing the shift modifier together with a cursor key.

2.1.5 Menu

All menus are located at top of the drawing area. Only a few of their functions are available
from the keyboard too. Some of the entries like center require a certain cursor position. In
this case a info line will popup at the bottom saying something like

press button at position or key to abort

Any mouse button will do the job whereas any key beside the cursor keys will cancel the
operation. For details see Section 5.2 [Actions], page 20.

‘About’ There is no menu hiding behind this button but a small information box.

‘File’ This menu offers a selection of loading, saving and printing data, saving con-
nection information to a file or quitting the application. You may also change
the layouts or the current layers name. Selecting PostScript pops a a printer
control dialog which is, hopefully, self explaining. This box contains a panner
widget (only X11R5 and later) which simplifies adjusting the offsets. With ear-
lier releases the printout will always appear in the upper left corner with respect
to the media margins.

‘Display’ The display menu supports the most needed functions that are related to screen
output. The entries are used to change the grid to some popular values, the

Chapter 2: Getting Started 7

zoom factor, the displayed element name as well as to center or redraw the
output. You may also switch displaying of the grid on or off and select between
absolute grid (origin at (0,0)) or relative grid (origin at position where grid has
been changed).

‘Sizes’ This menu changes the initial size of new vias, drilling holes and lines as well
as the current maximum size of the layout.

‘Objects’ Displaying the pinout of an element and changing it’s names as well as editing a
text object is offered by this menu. The last two selections require an additional
pointer button click at the objects position.

‘Selection’

This menu covers most of the operations that work with selected objects. You
may either (un)select all visible objects of a layout or only the ones which have
been found by the last connection scan. Toggling the selection of a single object
is available by pressing None<Btn3Down>. !BTNMOD<Btn3Down>, moving
and !BTNMOD<Btn3Up> select all visible objects inside the rectangle. Pressing
the modifier key Shift too unselects all objects in the area. The other entries
change the sizes of visible and selected objects.

‘Buffer’ This menu handles pastebuffer related actions. You may select one out of 5
buffers to use, rotate or clear its contents and paste it to the layout. Be aware
that only visible objects are pasted to the layout.

‘Connections’
The entries available through this menu button allow the user to find connec-
tions from pins or vias and to manipulate these. The connection lists can be
saved by selecting entries from the File menu.

‘Undo’ This menu is a frontend for managing undo’s off destructive operations like
remove, copy, move and the changing of names. The number of operations is
unlimited (depending on memory). The list is cleared if new layout data is
loaded or by an entry in this menu.

2.2 Log Window

This optional window is used to display all kind of messages. These include the ones written
to stderr by external commands. The main advantage is that its contents can be searched
and that they are available till the program exits. Disabling this feature by setting the
resource useLogWindow to false will generate popup windows to display messages. The
stderr of external commands will appear at Pcbs stderr which normally is the parent shell.
I suggest that you iconify the window after startup. If raiseLogWindow is set true, the
window will deiconify and raise itself when new messages are to be displayed.

2.3 Drawing and Removing Basic Objects

There are some ways of creating new objects. First, you draw them yourself or second,
by copying an existing object and third by loading an element from a file. Creating new
objects is normally related to a special mode depending on the object type. The notation
of key and button events is the same as described in the X11 Intrinsics manual.

Chapter 2: Getting Started 8

The operation mode can be selected by one of the mode selectors in the bottom left
corner or by one of the function keys listed earlier in this chapter. None<BtnIDown> and
None<Key>space send a notify request to the application which responds by creating or
changing the appropriate object or at least takes the first step to do so. Selecting a mode
forces the mode selector to be redrawn with a different line thickness.

Removing objects is possible by None<Key>Backspace which removes the object at the
cursor location. If more than one object is located at the same position, the smallest type
will be selected. If two or more are of the same type, the newest one will be chosen. You
may also change to remove-mode and click None<Btn1Down> at the location of the objects
which are to be removed.

Mirroring and rotating work similar to that. Change the mode and press
None<BtnlDown> at the objects location. Remember, not all object types support
mirroring and rotating.

Removing objects, changing their size or moving them does only apply to the ones that
are visible when the command is entered.

There are several keystrokes and button events that refer to an object without identifying
its type. Here’s a list of them:

None<Key>space and None<BtnlDown> create an object depending on the current mode.

None<Key>BackSpace removes the visible object at the cursor location. The order is:
pin, via, line, text, polygon and element. Only one object is removed. If two or more of the
same type match, the newest one is removed.

Use None<Key>s and IShift< Key>s to change the size (width) of lines, text objects, pins
and vias.

None<Key>n changes the name of pins, vias and elements or the string of a text object.

None<Key>u recovers from an unlimited number of destructive operations like removing,
moving or copying objects.

For a complete list of keystrokes and button events checkout Section 5.3 [Translations],
page 25.

2.3.1 Lines

To draw new lines you have to be in line-mode. Get there by either selecting it from
the Modes menu or by pressing None<Key>F2. The statusline shows the new setting.
Each successive press of a create button creates a new line of a polygon. The adjustment
to 45 degree lines is done automatically if it is selected from the Display menu. Press
None<Key>FEscape to leave line-mode.

None<Key>l and !Shift< Key>l and the menu entries of Sizes change the initial value of
new lines that is displayed in the statusline.

2.3.2 Polygons and Rectangles

A polygon is drawn by defining all of its segments like drawing lines. If the first point
matches a new one and if the number of points is greater than 2 the the point is as-
sumed the final one. Since relocating the first point may be a hard job you can use /BT-
NMOD<Btn1Down> to close the polygon. An error can occur if clipping to 45 degree lines
has been selected and the final segment does not match this condition. The rectangle-mode

Chapter 2: Getting Started 9

is just a easy way to generate rectangles. All of them are handled like polygons internally.
I suggest that you create small convex polygons to avoid an impact on the scanning rou-
tines and since editing of polygons isn’t supported yet. Polygon-mode is also selected by
None<Key>F6 whereas rectangle-mode uses None<Key>F/. Pressing a None<Btn1Down>
at two locations creates it by defining two of its corners. None<Key>Insert inserts a new
point into an existing polygon. The new point is located at the crosshair location and is
placed on the segment with the lowest distance. /Shift Ctri< Key>Insert removes a point of
a polygon if the number of corners is greater then 3. Pressing None<Key>p while entering a
new polygon brings you back to the previous corner wheras /Shift< Key>p closes the polygon
if possible. The last command may fail if clipping to 45 degree lines is enables. Inserting
or removing a point don’t force clipping.

2.3.3 Text

Pressing None<Key>F5 or clicking into the selector button changes to text-mode. Each
successive notify event (None< Btn1Down>) pops up the input line at the bottom and queries
for a string. Now enter it and press None<Key>Return to confirm or None<Key> Escape to
abort. The text object is created with its upper left corner at the current pointer location.
The cursor location is the fixpoint for rotations.

Now switch to rotate-mode or mirror-mode and press None<BtnlDown> at the texto-
bjects location. Mirroring textobjects will be used for strings on the solder side of the
layout.

Use None<Key>n to change the string.

2.3.4 Vias

The initial size of new vias can be changed by None<Key>v and /Shift< Key>v or by selecting
the appropriate entry from the Sizes menu. /Modi<Key>v and /Modl Shift<Key>v do
the same for the drilling hole of the via. The statusline is updated with the new values.
Creating a via is similar to the other objects. Switch to wia-mode by using the selector
button of None<Key>F1 then press None<Key>Space of None<BtnlDown> to create one.
None<Key>n changes the name of a via.

2.3.5 Elements

Some of the functions related to elements only work if both the package layer and the pin
layer are switched on.

First of all, you have to load data into the paste buffer. There are two ways to do so:

load the data from a file
copy data from an already existing element

We don’t have any elements on the screen yet so we use number one.

:le pops up a fileselector box which is self-explaining. Select mc68030_pga from the
circuits directory. The data is loaded and the mode is switched to pastebuffer-mode. If the
circuit couldn’t be found ask your SysAdmin to check the search paths. Each notify event
does now create one of these biests. Just reset the mode by unselecting the mode button or
by None<Key>Escape. The crosshair is located at the mark position as defined by the data
file. Rotating the buffer contents is done by selecting the rotate entry of the Buffer menu.
The contents of the buffer are valid until new data is loaded into it either by a cut-and-paste

Chapter 2: Getting Started 10

operation or by loading a new data file. There are MAX_BUFFER buffers available. Switch-
ing between them is done by selecting a menu entry or by /Shifi<Key>1..MAX_BUFFER.

The release includes all data files for the circuits that have been used by the demo layout.
If you have problems with the color of the crosshair change the resource setting to a different
one.

Now load a second data file called mc68882_pga by entering :1le mc68882_pga. Create
the circuit as explained a few lines up. You now have two different unnamed circuits, a
CPU and a FPU. Unnamed means the the layouts name of the element hasn’t been set yet.
Selecting canonical from the Display menu displays the canonical names of the two circuits
which are MC68030 and MC68882. Each of the two names of an element can be changed by
None<Key>n at the elements location and editing the old name in the bottom input line.
Naming pins and vias is similar to elements.

The mentioned second way to create a new element is to copy an existing one. Please
refer to Section 2.4 [Moving and Copying], page 10.

To display the pinout of a circuit move to it and push None<Key>d or select show pinout
from the Objects menu. A new window pops up and displays the complete pinout of the
element. Dismiss it by clicking to the appropriate button. You may also want to change a
pins current size by pressing None<Key>s to increment or /Shift< Key>s to decrement it.

For information on element connections refer to Section 2.7 [Connection Lists|, page 12.

2.3.6 Pastebuffer

The linestack and element-buffer of former releases have been replaced by MAX_BUFFER
multi-purpose buffers which are selected by /Shift<Key>1..MAX_BUFFER. The statusline
shows the currently selected one. You can load data from a file into them or copy layout
data. Cut-and-paste works too. If you have followed the instructions earlier in this chapter
you should now have several objects on the screen. Move the crosshair to one of them and
press None<Btn3Down> to toggle it’s selection flag. The object is redrawn in a different
color. You may also want to try /BTNMOD<Btn3Down>, move the pointer while holding
the button down and release it on a different location. This selects all objects inside the
rectangle. Using /Shift Mod1<Btn3Down> unselects all objects. Now change to pastebuffer-
mode and select the entry of the Buffer menu which you want to try. Copying objects to
the buffer is available as /Ctri< Key>x while cutting them uses !Ctrl Shift< Key>z. Both clear
the buffer before new data is added. Element data or PCB data can be merged into an
exosting layout by loading the datafiles into the pastebuffer. Both operations are available
from the File menu or as user commands.

2.4 Moving and Copying

All objects beside pins can be moved, even element-names, by None<Btn2Down>, moving
the pointer while holding the button down and releasing it at the new location of the
object. If you use /BTNMOD<Btn2Down> instead the object is copied. This does not work
for element-names. You have to use the cut-and-paste paradigm for copying and moving
groups of objects. Please refer to Section 2.3.6 [Pastebuffer|, page 10.

Chapter 2: Getting Started 11

2.5 Loading and Saving

After your first experience with Pcb you will probably like to save your work. :s name
passes the data to an external program which is responsible for saving it. For details see
saveCommand in Section 5.1 [Resources|, page 16. Saving is also available from the File
menu, either with passing a filename or using the original one. Pcb reuses the last filename
if you do not pass a new one to the save routine.

To load an existing layout either select load layout data from the File menu or use :1
filename. A file selectbox pops up if you don’t specify a filename. Merging existing layouts
into the new one is supported either by the File menu or by :m filename.

Pcb make a backup of the current layout depending on the resource backup. The file is
named BACKUP_NAME. During critical sections of the program or when data would be lost
it is saves as EMERGENCY_NAME. % is replaced by the process ID.

2.6 Printing

Pcb is only able to create a PostScript file. I recommend the use of GhostScript if you
don’t have a PostScript printer. Select either wvisible layers or package, pins and vias from
the File menu. Both of them pop up a control panel with the following options:

‘scaling’ It’s quiet useful to enlarge your printout for checking the layout. Use the
scrollbar to adjust the scaling factor to your needs.

‘rotate’ Rotate layout 90 degrees counter-clockwise before printing (default).

‘mirror’ Mirror layout before printing. Use this option for the solder side depending on
your production line.

‘color’ Pass color information to the PostScript file. All colors will be converted to
black if this option is inactive.

‘media’ Select the size of the output media from this menu. The user defines size can
be set by the resource media either from one of the well known paper sizes or
by a X11 geometry specification. This entry is only available if you use X11R5
or later. For earlier releases the user defined size or, if not available, A4 is used.

‘offset’ Adjust the offsets of the printout by using the panner at the right side of the
dialog box. This entry is only available if you use X11R5 or later. A zero offset
is used for earlier releases.

‘commandline’
Use this line to enter a command (starts with |) or a filename. The default is
set by the resource printCommand.

The created file includes some labels which are guaranteed to stay unchanged
‘PCBMIN’ identifies the lowest x and y coordinates in mil.
‘PCBMAX’ identifies the highest x and y coordinates in mil.

‘PCBOFFSET’
is set to the x and y offset in mil.

‘PCBSCALE’
is a floating point value which identifies the scaling factor.

Chapter 2: Getting Started 12

‘PCBSTARTDATA’

‘PCBENDDATA’
all layout data is included between these two marks. You can use them with
a awk script to produce several printouts on one piece of paper by duplicating
the code and putting some translate commands in front. Be aware that the
normal PostScript units are 1/72 inch.

2.7 Connection Lists

After completing parts of your layout you may want to check if all drawn connections match
the ones you have in mind. To demonstrate how to use of the appropriate commands execute
the following stuff:

create at least two elements and name them
create some connections between their pins
optionally add some vias and connections to them

Now select find from the Connections menu, move the cursor to a pin or via and press
any mouse button. Pcb will look for all other pins and/or vias connected to the one you are
at and display the objects in a different color. Now try some of the reset options available
from the same menu.

There is also a way to scan all connections of one element. Select a single element from
the menu and press any button at the elements location. All connections of this element
will be saved to the specified file. Either the layout name of the element or its canonical
name is used to identify pins depending on the one that is displayed on the screen (can be
changed by Display menu).

An automatic scan of all elements is initiated by choosing all elements. It behaves like
scanning a singe element except that the resource resetAfterElement is used to determine
if connections should be reset before a new element is scanned. Doing so will produce very
long lists because the power lines are rescanned for every element. The default is set to
false for this reason.

Scanning for unconnected pins is selected as unused pins from the same menu.

2.8 Selection

Some commands mentioned earlier in this chapter can also operate on all selected and
visible objects. Now go back to the layout and toggle the selection flag of a single one by
None<Btn3Down>. Try IBTNMOD<Btn3Down>, move the pointer while holding the button
down and release it on a different location. This selects all objects inside the rectangle.
Using /Shift Mod1<Btn3Down> unselects all objects.

The entries of the Selection menu are self-explaining.

13

3 User Commands

The entering of user-commands is initiated by the action routine Command() and finished
by either None<Key>Return or None<Key>Escape to confirm or to abort. These two key-
bindings cannot be changed from the resource file. The triggering event, normally a key
press, is ignored. The input area will replace the bottom statusline. It pops up when
Command() is called. The arguments of the user-commands are passed to the external
commands without modification. See also the resource savelnTMP.

There are simple usage dialogs for each command and one for the complete set of com-
mands.

‘1 [filename]’
Loads a new datafile and, if confirmed, overwrites any existing unsaved data.
The filename and the searchpath (filePath) are passed to the command defined
by fileCommand. If no filename is specified a file select box will popup.

‘le [filename]’
Loads an element description into the paste buffer. The filename and the search-
path (elementPath) are passed to the command defined by elementCommand.
If no filename is specified a file select box will popup.

‘m [filename]’
Loads an layout file into the paste buffer. The filename and the searchpath
(filePath) are passed to the command defined by fileCommand. If no filename
is specified a file select box will popup.

‘ql!']’ Quits the program without saving any data (after confirmation).

‘s [filename]’
Passes data and filename to the command which was set by the resource
saveCommand. If no filename entered either the last one is used again or,
if it is not available, a file select box pops up.

14

4 Command-Line Options

There are several resources which can be set or reset beside the standard toolkit command-
line options. For a complete list refer to Section 5.1 [Resources|, page 16.

The synopsis is:
pcb [-option ...] [-toolkit_option ...] [layout-file]
or

pcb -specialoption

4.1 Options

‘~alldirections/+alldirections’
Disables or enables line clipping to 45 degree angles. Overwrites the resource
allDirectionLines.

‘~backup value’
Time between two backups in seconds. Passing zero disables the backup feature.
Overwrites the resource backupInterval.

‘-c value’ Number of characters per output line. The resource charactersPerLine is over-
written.

‘~fontfile filename’
The default set of symbols (font) for a new layout is read from this file. All
directories as defined by the resource fontPath are scanned for the file. The
scan is only performed if the filename doesn’t contain a directory component.
The fontFile resource is changed.

‘~lelement command-line’
Sets the command to be executed when an element is loaded from a file to
the paste buffer. The command may contain %f and %p to pass the requested
filename and the searchpath to the command. It has to write the data to its
standard output. The related resource is elementCommand.

‘-1file command-line’
Sets the command to be executed when a new layout is loaded from a file.
The command may contain %f and %p to pass the requested filename and the
searchpath to the command. It has to write the data to its standard output.
The related resource is fileCommand.

‘~1font command-line’
Sets the command to be executed when a font is loaded from a file. The com-
mand may contain %f and %p to pass the requested filename and the searchpath
to the command. It has to write the data to its standard output. The related
resource is fontCommand.

‘-1g layergroups’
This option overwrites the resource layerGroups. See its description for more
information. The value is used for new layouts only.

Chapter 4: Command-Line Options 15

‘~loggeometry geometry’
Determines the geometry of the log window.

‘-pnl value’
Restricts the displayed named of a pin in the pinout window to the passed
value. See also the resource pinoutNameLength.

‘-pz value’
Sets the zoom factor for the pinout window according to the formula: scale =
1:(2 power value). The related resource is pinoutZoom.

‘-reset/+reset’
If enabled, all connections are reset after each element that is scanned. The
feature is only used while scanning connections to all elements. See also re-
setAfterElement.

‘-ring/+ring’
Overrides the resource ringBellWhenFinished. If enabled, the bell on the key-
board is rang when connection searching has finished.

‘-g/+s’ Enables/Disables the saving of the previous commandline. Overrides the save-
LastCommand resource.

‘-save/+save’
See the resource description of savelnTMP for details.

‘-sfile command-line’
Sets the command to be executed when an layout file is saved. The command
may contain %f which is replaced by the filename. The command must read
it’s data from the standard input. The resource saveCommand is overwritten.

‘size <width>x<height>’
Overrides the resource size which determines the maximum size of a layout.

‘-v value’ Sets the volume of the X speaker. The value is passed to XBell() and has to
be in the range -100..100.

4.2 Special Options

There are some special options available in addition to normal command-line options. Each
of them can only be specified without any other options. The available special options are:

‘~-copyright’
Prints out the copyright notice and terminates.

‘—version’
Prints out the version ID and terminates.

‘~help’ Prints out the usage message and terminates.

16

5 X11 Interface

This chapter gives an overview about the additional X11 resources which are defined by Pcb
as well as the defined action routines. A widget tree is also included.

5.1 Non-Standard X11 Application Resources

Beside the toolkit resources, Pcb defines the following additional resources:

‘absoluteGrid (boolean)’
Selects if either the grid is relative to the position where it has changed last or
absolute, the default, to the origin (0,0).

‘backupInterval (int)’
Pcb has an automatic backup feature which saves the current data every n
seconds. The default is 300 seconds. A value of 0 disables the feature. The
backup file is named BACKUP_NAME. %i is replaced by the process ID. See also
the command-line option -backup.

‘charactersPerLine (int)’
Pcb uses this value to determine the page width when creating lists. N, the
number of characters per line, defaults to 80. See also the command-line option
-C.

‘connectedColor (color)’
All pins, vias, lines and rectangles which are selected during a connection search
are drawn with this color. The default value is determined by XtDefaultFore-
ground.

‘crosshairColor (color)’
This color is used to draw the crosshair cursor. The color is a result of a XOR
operation with the contents of the drawing area. The result also depends on
the default colormap of the used X11 server because only the colormap index is
used in the boolean operation and Pcb doesn’t create it’s own colormap. The
default setting is XtDefaultForeground.

‘elementColor (color)’
The elements package part is drawn in this color which also defaults to XtDe-
faultForeground.

‘elementCommand (string)’
Pcb uses a user defined command to read element files. This resources is used
to set the command which is executed by the users default shell. Two escape
sequences are defined to pass the selected filename (%f) and the current search
path (%p). The command has to write the element data to its standard output.
The default value is

MAPATH="%p";export MAPATH;echo ’include(%f)’" | m4

Using the GNU version of m4 is highly recommended. See also the command-line
option -lelement.

Chapter 5: X11 Interface 17

‘elementPath (string)’
A colon separated list of directories or commands (starts with ’|’). The path is
passed to the program specified in elementCommand together with the selected
elementname. A specified command will be executed in order to create entries
for the fileselect box. It has to write its results to stdout one entry per line. See
also the user-command le//].

‘fileCommand (string)’
The command is executed by the users default shell whenever existing layout
files are loaded. Data is read from the commands standard output. Two escape
sequences can be specified to pass the selected filename (%f) and the current
search path (%p). The default value is

cat %f
See also the command-line option -Ifile.

‘filePath (string)’
A colon separated list of directories or commands (starts with ’|”). The path
is passed to the program specified in fileCommand together with the selected
filename. A specified command will be executed in order to create entries for
the fileselect box. It has to write its results to stdout one entry per line. See
also the user-command I/!].

‘fontCommand (string)’
Loading new symbol sets is also handled by an external command. You may
again pass the selected filename and the current search path by passing %f and
%p in the command string. Data is read from the commands standard output.
This command defaults to

cat %f
See also the command-line option -ifont.

‘fontFile (string)’
The default font for new layouts is read from this file which is searched in the
directories as defined by the resource fontPath. Searching is only performed if
the filename does not contain a directory component. The default filename is
FONTFILENAME. See also the command-line option -fontfile.

‘fontPath (string)’
This resource, a colon separated list of directories, defines the searchpath for
font files. See also the resource fontFile.

‘grid (int)’
This resources defines the initial value of one cursor step. It defaults to 100 mil
and any changes are saved together with the layout data.

‘layerColorl. .MAX_LAYER (color)’
These resources define the drawing colors of the different layers. All values are
preset to XtDefaultForeground.

‘layerGroups (string)’
The argument to this resource is a colon separated list of comma separated
layernumbers (1.MAX_LAYER). All layers within one group are switched

Chapter 5: X11 Interface 18

on/off together. The default setting is 1:2:3:....MAX_LAYER which means
that all layers are handled separatly. Grouping layers one to three looks like
1,2,3:4:...:MAX_LAYER See also the command-line option -lg.

‘lineThickness (dimension)’
The value, range [MIN_LINESIZE,MAX_LINESIZE], defines the initial thick-
ness of new lines. The value is preset to 10 mil.

‘media (<predefined> | <width>x<height>)’
The default (user defined) media of the PostScript device. Predefined values
are a8, a4, ad, letter, tabloit, ledger, legal, and executive. The second way

is to specify the medias width and height in mil. The resource defaults to
DEFAULT_MEDIASIZE size.

‘mediaMarginleft (int)’

‘mediaMarginBottom (int)’
The resources determine the device dependent offset of a printout. Both default
to 500.

‘offLimitColor (color)’
The area outside the current maximum settings for width and height is drawn
with this color. The default value is determined by XtDefaultBackground.

‘pinColor (color)’
This resource defines the drawing color of pins. The value is preset to XtDe-
faultForeground.

‘pinoutFont (string)’
This font is used to display pin names in the pinout window. Its value is preset
to XtdefaultFont.

‘pinoutNameLength (int)’
This resource limits the number of characters which are displayed for pin names
in the pinout window. By default the string length is limited to § characters
per name. See also the command-line option -pnl.

‘pinoutOffsetX (int)’

‘pinout0ffsetY (int)’
These resources determine the offset in mil of the circuit from the upper left
corner of the window when displaying pinout information. Both default to 100.

‘pinoutText0ffsetX (int)’

‘pinoutText0ffsetY (int)’
The resources determine the distance in mil from the drilling hole of a pin to
the location where its name is displayed in the pinout window. They default to
X:50 and Y:0.

‘pinoutZoom (int)’
Sets the zoom factor for the pinout window according to the formula: scale =
1:(2 power value). Its default value is 2 which results in a 1:4 scale. See also
the command-line option -pz.

Chapter 5: X11 Interface 19

‘printCommand (string)’
Default file for printouts. If the name starts with a the output is piped
through the command. There is no default file or command.

7|7

‘raiseLogWindow (boolean)’
The log window will be raised when new messages arrive if this resource is set
true, the default.

‘resetAfterElement (boolean)’
If set to true, all found connections will be reset before a new element is scanned.
This will produce long lists when scanning the whole layout for connections.
The resource is set to false by default. The feature is only used while looking
up connections of all elements. See also the command-line option -reset, +reset.

‘ringBellWhenFinished (boolean)’
Whether to ring the keyboards bell (the default) when connection searching
has finished or not. See also the command-line option -ring, +ring.

‘saveCommand (string)’
This command is used to save data to a layout file. The filename can be passed
by %f in the string. It has to read the data from its standard input. The default
command is

cat - > %f
See also the command-line option -sfile.

‘saveInTMP (boolean)’
Enabling this resource will save all data which would otherwise be lost in a
temporary file EMERGENCY_NAME. Z%i is replaced by the process ID. As an ex-
ample, loading a new layout when the old one hasn’t been saved would use this
resource. See also the command-line option -save, +save.

‘saveLastCommand (boolean)’
Enables the saving of the last entered user command. The option is disabled
by default. See also the command-line option -s, +s.

‘selectedColor (color)’
Defines the color to be used to display selected objects. The default is set to
XtDefaultForeground.

‘useLogWindow (boolean)’
Several subroutine send messages to the user if an error occurs. This resource
determines if they appear inside the log window or as a separate dialog box. See
also the resource raiseLogWindow and the command-line option -loggeometry.
The default value is true.

‘viaColor (color)’
Defines the color to be used to display vias. The default is set to XtDefault-
Foreground.

‘viaThickness (dimension)’

‘viaDrillingHole (dimension)’
The initial thickness and drilling hole of new vias. The values must be
in the range [MIN_PINORVIASIZE, MAX_PINORVIASIZE| with at least

Chapter 5: X11 Interface 20

MIN_PINORVIACOPPER mil of copper. The default thickness is 40 mil the
default drilling hole 20.

‘size (<width>x<height>)’
Determines the maximum size of a layout. The default is DEFAULT_SIZE.

‘volume (int)’
The value is passed to XBell() which sets the volume of the X speaker. The
values range is -100..100 and it defaults to the maximum volume of 100.

‘zoom (int)’
The initial value for output scaling is set according to the following formula:
scale = 1:(2 power value). It defaults to & which results in an output scale of
1:8.

Refer also to Chapter 4 [Command-Line Options|, page 14.

5.2 Actions

All user accessible commands can be bound to almost any X event. No default binding for
commands is done in the binaries so it’s vital for the application that at least a systemwide
application resource file exists. This file normally resides in the X11/1ib/app-defaults direc-
tory and is called Pcb. The bindings to which the manual refers to are the ones as defined
by the shipped resource file.

Take special care about translations related to the functions keys and the pointer buttons
because most of the window managers use them too. Change the file according to your
hardware /software environment. You may have to replace all occurances of base Translations
to translations you use a X11R4 server.

Passing Object as an argument to an action routine causes the object at the cursor
location to be changed, removed or whatever. SelectedObjects will handle all selected and
visible objects.

‘Bell()’ Rings the bell of your display.

‘ChangeSize(Object, delta)’
‘ChangeSize(SelectedLines|SelectedPins|SelectedVias, delta)’
To change the size of an object you have to bind these action to some X event.
All combinations of argument and value, positive or negative, change the size
of one object at the cursor position by incrementing it’s current size by delta.
Passing Selected... changes the size of all selected and visible objects. Text
objects can be used too. Default:

None<Key>s: ChangeSize(Object, 5)
IShift<Key>s: ChangeSize(Object, -5)

‘Change2ndSize(0Object, delta)’

‘Change2ndSize(SelectedPins|SelectedVias, delta)’
This action routine changes a second object related size. Right now only the
drilling hole of pins and vias is available. Default:

IMod1<Key>s: Change2ndSize(Object, 5)
IModl Shift<Key>s: Change2ndSize(Object, -5)

Chapter 5: X11 Interface 21

‘ChangeName (Object)’

‘ChangeName (Layer | Layout)’
Changes the name of the visible object at the cursor location. A text objects
doesn’t have a name therefore it’s string is changed. For elements always the
visible name is changed. See Display(CanonicalName| NameOnPCB) for de-
tails. Passing Layer changes the current layers name. Default:

None<Key>n: ChangeName (Object)

‘Command ()’
Calling Command() pops up an input line at the bottom of the window which
allows you to enter commands. The dialog ends when None<Key>Return to
confirm or None<Key>FEscape to abort is entered. Default:

<Key>colon: Command ()

‘Connection(Find)’

‘Connection(ResetFoundLinesAndRectangles|ResetFoundPinsAndVias|Reset)’
The Connection() action is used to mark all connections from one pin, line or
via to others. The ResetFoundLinesAndRectangles, ResetFoundPinsAndVias
and Reset arguments can be used to reset all marked lines and rectangles, vias
and pins or all of them. The search starts with the pin or via at the cursor
position. All found objects are drawn with the color defined by the resource
connectedColor. See also Display(NameOnPCB| CanonicalName). Default:

IShift<Key>c: Connection(Reset)
None<Key>f: Connection(Find)

‘Display(CanonicalName | NameOnPCB)’

‘Display(Grid|Toggle45Degree|ToggleGrid)’

‘Display(Center|ClearAndRedraw|Redraw)’

‘Display(Pinout)’
This action routines handles some output related settings. It is used to center
the display around the cursor location and to redraw the output area optionally
after clearing the window. Centering is done with respect to the grid setting.
Displaying the grid itself can be switched on and off by Grid but only if the
distance between to pixels exceeds MIN_GRID_DISTANCE pixels. Pcb is able
to handle two names of an element. The first one, the canonical name, should
be used to describe it’s electronical function (eg MC68040), whereas the second
one should be used to inform the user about the functionality (eg CPU). The
Display() action selects which of the two names is displayed and used when
generating connection lists. If ToggleGrid is passed Pcb changes between rela-
tive ('r’ in the statusline) and absolute grid (an ’a’). Relative grid means that
the cursor position where the last change of the grid setting occured is used as
the grid origin, (0,0) is used in case of absolute grid. Passing Pinout displays
the pinout of the element at the current cursor location. Default:

None<Key>c: Display(Center)

None<Key>d: Display(Pinout)
None<Key>r: Display(ClearAndRedraw)

Chapter 5: X11 Interface 22

‘Load (ElementToBuffer|Layout|LayoutToBuffer)’
This routine pops up a fileselect box to load layout or element data. The passed
filename for layout data is saved and can be reused for saving it. FElementTo-
Buffer and LayoutToBuffer load the data into the current buffer. No defaults.

‘Mode (Copy | Line |Move | None | PasteBuffer|Polygon)’

‘Mode (Remove |Rectangle|Text|Via)’

‘Mode (Notify)’

‘Mode (Save |Restore)’
Switches to a new mode of operation. The active mode is displayed by a thick
line around the matching mode selector button. Most of the functionality of Pcb
is implemented by selecting a mode and calling Mode(Notify). The arguments
Line, Polygon, Rectangle, Text and Via are used to create the appropriate object
whenever Mode(Notify) is called. Some of them like Polygon need more than
one call for one object to be created. Save and Restore are used to temporarily
save the mode, switch to another one, call Mode(Notify) and restore the saved
one. Have a look to the application resource file for examples. Copy and Move
modes are used to change an objects location and, optionally, to create a new
one. The first call of Mode(Notify) attaches the object at the pointer location to
the crosshair whereas the second one drops it to the layout. Passing PasteBuffer
attaches the contents of the currently selected buffer to the crosshair. Each call
to Mode(Notify) pastes this contents to the layout. Mode(None) switches all
modes off. Default:

<Key>Escape: Mode (None)

<Key>space: Mode (Notify)

None<Key>BackSpace: Mode (Save) Mode(Remove) Mode(Notify) Mode(Restore)
None<Key>F1: Mode (Via)

None<Key>F2: Mode (Line)

None<Key>F3: Mode (PasteBuffer)

None<Key>F4: Mode (Rectangle)

None<Key>F5: Mode (Text)

None<Key>F6: Mode (Polygon)

None<BtniDown>: Mode (Notify)

IShift Ctrl<BtnlDown>: Mode(Save) Mode(Remove) Mode(Notify) Mode(Restore)
None<Btn2Down> : Mode (Save) Mode(Move) Mode(Notify)

None<Btn2Up>: Mode (Notify) Mode(Restore)

I BTNMOD<Btn2Down> : Mode (Save) Mode(Copy) Mode(Notify)

I BTNMOD<Btn2Up>: Mode (Notify) Mode(Restore)

‘MovePointer(delta_x, delta_y)’
With this function it’s possible to move the crosshair cursor by using the cursor
keys. The X servers pointer follows because the necessary events are generated
by Pcb. All movements are performed with respect to the currently set grid
value. Default:

None<Key>Up: MovePointer (0, -1)
IShift<Key>Up: MovePointer (0, -10)
None<Key>Down: MovePointer (0, 1)

IShift<Key>Down: MovePointer(0, 10)

Chapter 5: X11 Interface 23

None<Key>Right: MovePointer(1, 0)

IShift<Key>Right: MovePointer (10, 0)
None<Key>Left: MovePointer (-1, 0)
IShift<Key>Left: MovePointer(-10, 0)

‘New()’ Clear the current layout and starts a new one after entering its name. Refer to
the resource backup for more information. No defaults.

‘PasteBuffer (AddSelected|Clear|1..MAX_BUFFER)’

‘PasteBuffer(Rotate, 1..3)’
This action routine controls and selects the pastebuffer as well as all cut-and-
paste operations. Passing a buffer number selects one out of 1..MAX_BUFFER.
The statusline is updated with the new number. Rotate performs a number of
90 degree counter clockwise rotations of the buffer contents. AddSelected as first
argument copies all selected and visible objects into the buffer. Passing Clear
removes all objects from the currently selected buffer. Refer to Section 2.3.6
[Pastebuffer], page 10, for examples. Default:

ICtrl<Key>x: PasteBuffer(Clear) PasteBuffer(AddSelected)
Mode (PasteBuffer)

IShift Ctrl<Key>x: PasteBuffer(Clear) PasteBuffer(AddSelected)
RemoveSelected() Mode(PasteBuffer)

IShift<Key>1: PasteBuffer(1)
IShift<Key>2: PasteBuffer(2)
IShift<Key>3: PasteBuffer(3)
IShift<Key>4: PasteBuffer(4)
IShift<Key>5: PasteBuffer(5)
None<Key>F3: Mode (PasteBuffer)

‘Polygon((Close|InsertPoint |PreviousPoint |RemovePoint)’

Polygons need a special action routine to make life easier. Calling
Polygon(PreviousPoint) resets the newly entered corner to the previous one.
Close creates the final segment of the polygon. This may fail if clipping to 45
degree lines is switched on. The two other arguments insert a new corner into
the segment with the lowest distance from the crosshair position or remove a
corner if there are at least 3 others left. Clipping isn’t enforced. Both of them
only work while in polygon-mode. Default:

None<Key>Insert: Mode (Save) Mode(Polygon) Polygon(InsertPoint)
Mode (Restore)

IShift Ctrl<Key>Insert: Mode(Save) Mode(Polygon) Polygon(RemovePoint)
Mode (Restore)

None<Key>p: Polygon(PreviousPoint)

IShift<Key>p: Polygon(Close)

‘Print (Layout |Package, PostScript)’
Pops up a print control box which lets you select some stuff like scaling, colored
output, mirroring and rotating. Passing Layout prints all visible layers, Package
only elements and vias. Only PostScript is supported right now. The output
can be send to a postprocessor by starting the filename with |. No defaults.

Chapter 5: X11 Interface 24

‘Quit ()’ Quits the application after confirming the operation. Default:
<Message>WM_PROTOCOLS: Quit()

‘RemoveSelected()’
This routine removes all visible and selected objects. No defaults.

‘Save (Layout | LayoutAs)’

‘Save (Al1lConnections|AllUnusedPins|ElementConnections)’
Passing Layout saves the layout using the file from which it was loaded or, if it
is a new layout, calls Save(LayoutAs) which queries the user for a filename. All-
Connections, AllUnusedPins and ElementConnections start a connection scan
and save all connections, all unused pins or the connections of a single element
to a file. No defaults.

‘Select (A11l|Block|Connection|ToggleObject)’
Toggles either the selection flag of the object at the crosshair position (7Tog-
gleObject) or selects all visible objects, all inside a rectangle or all objects that
have been found during the last connection scan. Default:

None<Btn3Down>: Select(TogglelObject)
IBTNMOD<Btn3Down>: Mode(Save) Mode(None) Select(Block)
IBTNMOD<Btn3Up>: Select(Block) Mode(Restore)

‘SetValue(Grid|LineSize|ViaDrillingHole|ViaSize|Zoom, value)’
Some internal values can be changed online by this function. The first pa-
rameter specifies which data has to be changed. The other one determines if
the resource is set to the passed value, if value is specified without sign, or
increments/decrements if it’s specified with plus or minus sign. The function
doesn’t change any existing object only the initial values of new objects. Use
the ChangeSize() and Change2ndSize() to change existing objects. Default:

None<Key>g: SetValue(Grid, +5)
IShift<Key>g: SetValue(Grid, -5)
None<Key>1: SetValue(LineSize, +5)
IShift<Key>1: SetValue(LineSize, -5)
None<Key>v: SetValue(ViaSize, +5)
IShift<Key>v: SetValue(ViaSize, -5)
IMod1<Key>v: SetValue(ViaDrillingHole, +5)
IModl Shift<Key>v: SetValue(ViaDrillingHole, -5)
None<Key>z: SetValue(Zoom, -1)
IShift<Key>z: SetValue(Zoom, +1)

‘Undo ()’

‘Undo(ClearList)’

The implemented unlimited undo feature of Pcb allows you to recover from the
following operations: change name, copy, move and remove. Calling Undo()
without any parameter recovers from the last of these operations. ClearList is
used to release the allocated memory. This function is called whenever a new
layout is started or loaded. Default:

None<Key>u: Undo ()
IShift Ctrl<Key>u: Undo(ClearList)

Chapter 5: X11 Interface 25

‘Unselect (All|Block|Connection)’
Unselects all visible objects, all inside a rectangle or all objects that have been
found during the last connection scan. Default:

IShift Mod1<Btn3Down>: Mode(Save) Mode(None) Unselect(Block)
IShift Mod1<Btn3Up>: Unselect(Block) Mode(Restore)

5.3 Default Translations

This section covers all default translations of key and button events as defined in the shipped
default application resource file. Most of them have already been listed in Section 5.2
[Actions|, page 20. Pcb makes use of a nice X11 feature; calling several action routines for
one event.

‘IMod1 Ctrl<Key>Left:’
‘1Mod1 Ctrl<Key>Right:’
‘1Mod1 Ctrl<Key>Up:’
‘1Mod1 Ctrl<Key>Down:’
Scroll one page in one of the four directions.

‘None<Key>Left:, !Shift<Key>Left:’
‘None<Key>Right:, !Shift<Key>Right:’
‘None<Key>Up:, !Shift<Key>Up:’
‘None<Key>Down:, !Shift<Key>Down:’

Move crosshair either 1 or 10 points in grid.

‘None<Key>Return:’
Finished user input, selects the ’default’ button of dialogs.

‘None<Key>Escape:’
Mode(Reset), aborts user input, selects the ’abort’ button of dialogs or resets
all modes.

‘None<Key>BackSpace:’

‘1Shift<Key>BackSpace:’

‘1Shift Ctrl<BtniDown>:’
The object at the cursor location is removed by None< Key>BackSpace or !Shift
Ctric Btn1Down> whereas Shift< Key>BackSpace also removes all other objects
that are connected to the one.

‘None<Btn2Down>, Btn2<Motion>, None<Btn2Up>:’

‘IBTNMOD<Btn2Down>, Btn2<Motion>, !BTNMOD<Btn2Up>:’
The first sequence moves the object or element name at the cursor location.
The second one copies the objects. This function isn’t available for element
names.

26

6 File Formats

All files used by Pcb are read from the standard output of a command or written to the
standard input of one as plain 7 bit ASCII. This makes it possible to use any editor to
change the contents of a layout file. It is the only way for element or font description files to
be created. To do so you’ll need to study the example files circuits/* and FONTFILENAME
which are shipped with Pcb. For an overview refer to Chapter 1 [Intro], page 3.

The following sections provide the necessary information about the syntax of the files.
The mentioned commands can add almost any additional functionality you may need. Ex-
amples are compressed read and write access as well as archives. The commands themselves
are defined by the resources elementCommand, fileCommand, fontCommand and saveCom-
mand. You should be aware that the commands are not saved together with the data. The
advantage is that a layout file holds all information independent of the other files.

One thing in common to all files is that they can include comments, newlines, and
carriage-returns at any place except quoted strings.

6.1 Basic Types

Here are the basic type definitions used in the other sections of this chapter.

LayoutName = Name

CanonicalName = Name

DeltaAngle = Number
DrillingHole = Number

Flags = Number
FontPosition = Number

Grid = Number

GridOffsetX = Number

GridOffsetY = Number

Group = decimal [,decimal]...
GroupString = """ Group [:Group]... """
Height = Number

LayerNumber = Number

Name = quoted_string
Number = decimal | hex
Spacing = Number

StartAngle = Number

SymbolID = Number | charconst
Thickness = Number

TextData = quoted_string
TextFlags = Flags

TextScale = scale

TextX = Number

TextY = Number

Width = Number

X = Number

X1 = Number

Chapter 6: File Formats 27

X2 = Number
Y = Number
Y1 = Number
Y2 = Number
charconst = "’" <any character> "’"

comment = "#" {<any character up to a newline>}...
decimal = [0-9]+

direction = [0-3]

hex = 0x[0-9a-fA-F]+

scale = [1-<positive integer>]

quoted_string = """ <anything except \n and \r> """
zoom = [0-MAX]

6.2 Layout File Format

The layout file describes a complete layout including symbols, vias, elements and layers
with lines, rectangles and text. This is the most complex file of all.

File = Header Font PCBData
Header = PCBName [GridData] [CursorData] [PCBFlags] [Groups]
PCBName = "PCB(" Name Width Height ")"
GridData = "Grid(" Grid GridOffsetX GridOffsetY ")"
CursorData = "Cursor(" X Y zoom ")"
PCBFlags = "Flags(" Flags ")"
Groups = "Groups(" GroupString ")"
Font = {FontData}...
FontData = {Symbol}...
Symbol = "Symbol(" SymbolID Spacing ")"
"(" {SymbolData}... ")"
SymbolData = {SymbolLine}...
SymbolLine = "SymbolLine(" X1 Y1 X2 Y2 Thickness ")"
PCBData = {Via | Layer | Element}...
Via = "Via(" X Y Thickness DrillingHole Name Flags ")"
Element = "Element (" Flags CanonicalName LayoutName \
TextX TextY direction scale TextFlags")"
"(" {ElementData}... [Mark] ")"
ElementData = {ElementLine | Pin | ElementArc }...
ElementLine = "ElementLine(" X1 Y1 X2 Y2 Thickness ")"
Pin = "Pin(" X Y Thickness DrillingHole Name Flags ")"
ElementArc = "ElementArc(" X Y Width Height
StartAngle DeltaAngle Thickness ")"
Mark = "Mark(" X Y ")"
Layer = "Layer (" LayerNumber Name ")"
"(" {LayerData}... ")"
LayerData = {Line | Polygon | Text}...
Line = "Line(" X1 Y1 X2 Y2 Thickness Flags")"
Polygon = "Polygon(" Flags ")" \

"(" {Points}... ")"

Chapter 6: File Formats 28

POiIltS = n(u X Y ||)u
Text = "Text(" X Y direction scale TextData Flags")"

‘PCBName’ is used to define the layouts name which is independent of it’s filename. It is
displayed in the lower left corner of the main window.

‘GridData’
is optional and is used to save the grid setting and offset that was set at the
time the layout was saved.

‘CursorData’
is also an optional parameter to save the last cursor location and zoom value.
The real zoom factor is calculated by scale = 1:(2 power value).

‘PCBFlags’
determine how to draw lines and which name of the elements should be dis-
played.

bit 5: display canonical element names if set
bit 7: use absolute grid if set
bit 8: don’t clip lines to 45 degrees

‘Groups’ Layergroups are saved by using this optional parameter. The only way of chang-
ing them is to use an editor and alter the appropriate line.

‘Symbol’ See the description of font files in this chapter.

‘Via’ Vias are always connected to all layers which also means that they are one
logical level ahead of them. They are defined by position, size, name and by
some flags.

bit 0: always clear
bit 1: always set
bit 2: set if via was found during a connection search
‘Element’ See the description of element files in this chapter.
‘Layer’ A layer is the central object from the users point of view. It holds all connections

and all text objects. Up to MAX_LAYER can be used individually. Its number,
starting with 1, and its name are read as arguments.

‘Line’ All lines are identified by their start and endpoints together with
their thickness and some flags. They have to fit a 45 degree scheme.

bit 2: set if line was found during a connection search
bit 6: line has been selected

‘Polygon’ used to fill a larger area with ‘copper’. The coordinates specify the
the corners. The flags are:

bit 2: set if polygon was found during a connection search
bit 6: polygon has been selected

‘Text’ You may use text objects to add information to your board. An
example would be naming a connector or marking pin one of it.
The position marks the lower left corner of the string which is also
a fixpoint for rotations. The directions are independent to the ones

Chapter 6: File Formats 29

of lines. They are counted from zero to three with a meaning of
zero to 270 degree rotations counter-clockwise. One bit of the flags
field is used to enable mirroring. The scaling value is a positive
integer which determines a zoom factor in percent.

bit 3: if set, use mirroring to draw the text string
bit 6: the text has been selected

6.3 Element File Format

Element files are used to describe one component which can then be used several times
within one or more layouts. You will normally split the file into two parts, one for the
pinout and one for the package description. Using m4 allows you to define pinnames as
macros in one file and include a package description file which evaluates the macros. See
the resource elementCommand for more information.

Going this way makes it possible to use one package file for several different circuits. See
the sample files dilx*.

The lowest x and y coordinates of all subobjects of an element are used as an attachment
point for the crosshair cursor of the main window.

File = {Element}...
Element = "Element (" Flags CanonicalName LayoutName \
TextX TextY direction scale TextFlags")"
"(" {ElementDatal}... [Mark] ")"
ElementData = {ElementLine | Pin | ElementArc }...
ElementArc = "ElementArc(" X Y Width Height
StartAngle DeltaAngle Thickness ")"
ElementLine = "ElementLine(" X1 Y1 X2 Y2 Thickness ")"
Mark = "Mark(" XY ")"
Pin = "Pin(" X Y Thickness DrillingHole Name Flags ")"
‘Element’ Objects of type element are determined by two names, a canonical and a layout

name, the according text position, its direction counted from 0 to 3 (n * 90
degrees counter-clockwise) and the data.

‘Flags’ The flag field determines the state of an element. The bit values
are:

bit 6: element has been selected

‘TextFlags’
‘scale’
‘direction’
See the description of text object earlier in this chapter.

‘ElementLine’
A line by its start and endpoint and its size. Only 45 degree lines
are supported.

‘ElementArc’
Defines an arc by its center, width, height, startangle, its length in
degrees and its size. Remember that the y axis on the screen grows
downwards.

Chapter 6: File Formats 30

‘Mark’ is just a hint to make positioning easier. The crosshair will be
positioned here. Its center is passed as the two arguments.

‘Pin’ A pin is very similar to a via except that it can’t be removed in-
dependent of the element to which it belongs. They are defined by
position, size, name and by some flags.

bit 0: always set

bit 1: always clear

bit 2: set if pin was found during a connection search
bit 6: pin has been selected

6.4 Font File Format

A number of user defined symbols are called a font. There is only one per layout. All
symbols are made of lines. See the file FONTFILENAME as an example.

The lowest x and y coordinates of all lines of a font are transformed to (0,0).

File = Font

Font = {FontData}...

FontData = {Symbol}...

Symbol = "Symbol(" SymbolID FontPosition ")"
"(" {SymbolDatal}... ")"

SymbolData = {SymbolLine}...

‘Symbol’ The two arguments are the ASCII code of the symbol and it’s distance to the
next symbol. Undefined symbols are drawn as filled rectangles. The ASCII
code can be passed as a character constant or a hex value.

‘SymbolLine’
The symbol data itself is made up of several entries of type Sym-
bolLine. Be aware that only 45 degree lines are supported.

31

Appendix A Installation and Troubleshooting

Compiling and installing the package should be straightforward. If any problems occur,
please contact the author (Thomas.Nau@rz.uni-ulm.de) to find a solution and include it
into the next release.

A.1 Compiling and Installing

This section covers the steps that are necessary to compile the package.

A.1.1 Editing the Imakefile

Most X11 related options are automatically covered by imake which is called from xmkmf.
The ones special to Pcb which have to be edited in Imakefile are:

‘INFOLIBDIR’
has to be set to the directory where your GNU info files are located in.

‘PCBLIBDIR’
is the path of a directory where the font files ... go to.

‘CIRCUITDIR’
a directory where electrical circuits go to.

‘PACKAGEDIR’
a directory where packages go to.

‘EXTRA_INCLUDES’
Some systems do not have the Athena Widget include files in their normal place
as configured by X11s config files. Define this like

EXTRA_INCLUDES = -I/usr/openwin/share/include
This is probably true for Suns which use OpenWindows.
‘EXITCALL’

The symbol EXITCALL should be defined according to the call on exit func-
tions supported by your system. There are three choices:

EXITCALL = -DHAS_ATEXIT if atexit() is supported (SYSV)
EXITCALL = -DHAS_ON_EXIT if on_exit() and no atexit() is supported
EXITCALL = if none of them is supported

Please check your manpages for details.

‘SYS_LIBRARIES’
This symbol is used to pass additional libraries to the linker. The only addi-
tional libraries that are used are the math and lex library.

‘PATCHES’ This symbol is passed to the compiler. Use it to define additional stuff. Add
-DNEED_STRDUP if your system does not have a strdup() library function.

If you have to make system dependent changes please include them into a #ifdef Archi-
tecture ... #endif construct and mail a copy to the author (Thomas.Nau@rz.uni-ulm.de).

Now run xmkmf -a to create the Makefile and do some stuff like make depend. This
should finish without any problems beside some systems that complain about missing in-
clude files. Don’t care about that at this time, the package should compile without any
problems.

Appendix A: Installation and Troubleshooting 32

A.1.2 Manuals

After xmkmf -a has created the new Makefile you are able to create the manpages, the
application resource, the info file, the TeX output and a reference card by executing

make pcb.man

make Pcb.ad

make pcb.info

make pcb.ps or make pcb.dvi
make refcard.ps or make refcard.dvi

You’ll need TeX, texindex and, if you want PostScript, dvips to build the manuals.
Preformatted documentation for the default configuration is available from the ./doc di-
rectory. A simple make builds the binary, manpage and the resource file. Get yourself a
printed copy to make life easier. TeX-3.0 failed, 3.14 worked just fine.

A.1.3 Compiling the Package

After reaching this point, it’s time for make. It should build the program, the applica-
tion resource file and the man-page without any errors. If it doesn’t refer to Section A.2
[problems], page 32.

You have to be root to install the package or at least a user with the appropriate right
on some X11 directories. Set umask to 022 else the will not be found because the directory
isn’t world readable.

make install and make install.man install the program, the fonts, the application de-
fault resource file, all element and package files as well as the manpage to the X11 directories.
make install.info does the same for the GNU info file.

A.2 Troubleshooting

There are some problems that are already known. Most of them are related to missing
parts of a standard X11 distribution. Some others are caused by 3rd party applications like
X servers. To make this list more complete please mail your problems and, if available,
solutions to the author. The mail address can be found at the beginning of this chapter. In
any case, read Section A.2.7 [X11], page 34.

By the way, you MUST HAVE AN ANSI COMPILER to make it work. The latest
versions of bison and flex are highly recommended as a replacement for yacc and lex.
Problems with syntax errors while parsing the demo files are related to old lex code.

If the shell script create_sed_script.sh fails with an error of awk check your system
for nawk or get the GNU gawk. See the script for details.

Another source of problems are older versions of flex and bison. Pcb definitely works
with flex-2.4.7 and bison-1.22 or later. The problems will result in a syntax error while
parsing files. You will have to add -Ifl to the SYS_LIBRARIES identifier in Imakefile.
See also Section A.2.6 [FreeBSD], page 34.

A.2.1 HP Series 300, 700 and 8x7 with X-Terminal (R5)

You have to install several X11 tools (imake) and include files or, better, install a complete
X11R5 release. HP doesn’t support the Athena Widgets so all header files and libraries are

Appendix A: Installation and Troubleshooting 33

missing. They also don’t ship the ANSI compiler with the normal OS release so you have
to buy one or use GCC.

Beside that, Pcb has been successfully tested on these platforms with HPUX 9.0[0134]
and X11R5.

A.2.2 Sun Sparc Station II

There are no known problems with Sun machines if they use X11R5 instead of OpenWindows.
Pcb compiled successfully with a Sparc Station 2, Station 5 and 10 running BSD-4.1.3 or
Solaris-2.3.

For problems with OpenWindows refer to Section A.2.7 [X11], page 34.
If xmkmf is missing, try

/usr/openwin/bin/imake -DUseInstalled -I/usr/openwin/lib/config
make Makefile

make includes

make depend

instead. I got it compiled with gcc-2.3.3 but the linker complained about missing
symbols

1d: Undefined symbol
_get_wmShellWidgetClass
_get_applicationShellWidgetClass

The problem can be related to the mixed OpenWindows - X11R5 environment which is
installed on the test machine. Anyway the code was executable and I haven’t got a core
yet.

A.2.3 Silicon Graphics Indigo

Pcb has been tested on a Iris Indigo, IRIX-4.0.5, with a X11R4 server. There are no
problems beside some additional compiler flags. X11R5 was used to compile the program.
For known problems with X11R4 see Section A.2.7 [X11], page 34. Check Imakefile too.

A.2.4 SCO Unix

John DuBois <spcecdt@deeptht.armory.com> wrote:

SCO0-0DT-3.0 requires the latest version of tls003, the Athena
widget library (available from sosco.sco.com). The main problems

I have encountered are that it core dumps fairly often, especially
while loading/dropping elements...

I’ll see what I can do as soon as I have access to a SCO system.

A.2.5 Linux

Since the X11 version of Pcb has been developed on a Linux system with XFree-2.1 (S3
server) there are no known problems. The older problem about an ATI VGA card that
locks up the server has been tracked to the board itself. The S3 server of XFree-3.1 works
fine too.

Appendix A: Installation and Troubleshooting 34

A.2.6 FreeBSD and NetBSD

If Pcb complains about syntax errors even in the demo files get rid of your lex and yacc
implementation. Replace them by GNU flex and bison. Don’t forget to change the
SYS_LIBRARIES in Imakefile from -/l to -[fi. You also have to define

YACC = bison -y

LEX = flex

A.2.7 Problems related to X11

There are a some problems related to X11R4 or systems derived from X11 like OpenWindows.
See Section A.2.2 [Sun], page 33. You have at least to change all occurances of baseTrans-
lations in the resource files to translations if you are using a R4 server. Have a look to the
X11R5 Intrinsics manual for details.

The panner widget (print dialog box) appears only in release 5 and later. It really
simplifies adjusting the offsets. With earlier releases the printout will always appear in the
upper left corner with respect to the set margins.

You may have some problems in a mixed X11 OpenWindows environment. If you want
to try it anyway you have to add an additional path for include files and define another
symbol in Imakefile,

EXTRA_INCLUDES = -I/usr/openwin/include
Pcb has been tested successfully with X11R6 under Linux 1.1.59.

A.2.8 Problems related to TeX

If your TeX installation complains about a missing texinfo.tex file copy the one included
in this release to your TeX macro directory. Be aware that there are probably newer versions
of this file available from some ftp sites. TeX-3.0 failed, TeX-3.14 worked just fine. Check
our ftp server ftp.medizin.uni-ulm.de for a prebuild version of the manuals.

Index of Resources

absoluteGrid........ ..ot 16
allDirectionlines.............coviiniuninnnn. 14
backupInterval...........ccoviiiiiinnnnnnn. 14, 16
charactersPerLine........................ 14, 16
CIRCUITDIRttt ittt et 31
connectedColorooviiiii i 16
crosshairColorooviiiiiniiennnnnn.. 16
default font......... ... i, 14
elementColor.......ovviiiin it 16
elementCommand 14, 16, 26
elementPath......... i, 16
EXITCALL ..o e e e 31
EXTRA_INCLUDESottt iiiieeeen 31
fileCommand...........c.covvuuuuunnnnnnn. 14, 17, 26
filePatho 17
fontCommand............................ 14, 17, 26
fontFile........... ..ol 14, 17
fontPathooiiiiiii i 17
Brid. ..o 17
INFOLIBDIRottt eeeeeeeannn 31
layerColor ...ttt 17
1ayerGroupsottt 14, 17
lineThicknesscoviiiniiiniiineiinennn. 18

35

M

media... ...t 18
mediaMarginBottom............................ 18
mediaMarginLeft 18
@)

offLimitColorttt 18
P

PACKAGEDIR...... 31
PATCHES o 31
PCBLIBDIR......ciiiiiiiiii i 31
pinColor 18
pinoutFont....................l 18
pinoutNameLength 15, 18
pinoutOffsetXl 18
pinoutOffsetY 18
pinoutTextOffsetX............................ 18
pinoutTextOffsetY............................ 18
pinoutZoom............. 15, 18
printCommand.............cciuiiiiiiinnnnnnnnan. 18
R

raiseLogWindow 19
resetAfterElement 15, 19
ringBellWhenFinished..................... 15, 19
S

saveCommand.uua... 15, 19, 26
saveInTMP i i 15, 19
saveLastCommand........................... 15, 19
selectedColor ..., 19
SIZE i 15, 20
SYS_LIBRARIESot 31
U
useLogWindow...............l 19
\Va

viaColorot 19
viaDrillingHole oot 19
viaThickness.............coiiiiiiiiiiiii.. 19
volume........ ... 15, 20
Z

36

Index of Actions, Commands and Options

_F

—copyright......... il
-fontfile.......l

Change2ndSize()ot 20
ChangeName ()coiiiiiiiiiiininennnn. 20
ChangeSize()........... ..o, 20
Command ()ovnniiiiie e 21
Connection()coviiniiini i 21
D

Display() «..oonriii i 21
L

Load() ..o 21
M

Mode () oo 22
MovePointer() ...t 22
N

NeW() ettt 23
P

PasteBuffer() iiiiiiiiiiii.. 23
Polygon()ooviniiii i 23
Print () . 23
Quit () e 23
R

RemoveSelected() 24
Save () ettt 24
Select() i 24
SetValue() ..ot 24
U

Undo() .o 24
Unselect () ... 24

Index of Concepts

about, command button......................... 6
ACHIONIS . o vttt 20
architecture............ ool 32, 33
ASCII files, format of, 25
Atari version......... ... 2

B

backup......... ..ol 11, 14, 15, 16, 19
basic types. ... 26
bell. .. 20
buffer, an example 10
buffer, popup menu 7
buffer, selecting a...................oaL 23
button translations L. 20

Cab. .o 17,19
centering ... 21
change active layer............ 5
change object name..............o 20
change settings i i 24
change sizes........ il 20
characters per line.......................... 14, 16
clipping lines to 45 degree...................... 21
clipping of linesc o i 14
closing a polygon ... 23
color printout.................................. 11
COlOTS .o 16, 17, 18, 19
command-line options................ 13
compile, how to........ ... i 31
connection, removing anc......... 25
connections, colors...........ooiiiiiiiiiiiiian. 16
connections, creating list of 12
connections, popup mMenu.coeeeeeeeen.. 7
connections, reseting 21
connections, reseting after element.......... 15, 19
connections, searching for...................... 21
control panel.......... il 5
copy an object 25
copying objects i 23
copying, an example oL 10
copyright ... 15
creating objects........... ... oL 8
CUTSOT COlOT . ..o v s 16
CUI'SOT MOVEMENtS. ..ottt 22
CUrSOr StepS. ... 17

cutting objects........ L 23

37

D

default font L 14, 17
default translations 25
directory /tmp ..., 11, 15, 19
display, popup menu, 6
displaying element names.................... 6, 21
displaying pinouto il 21
displaying status information.................... 5
drawing objects.......... ool 7
drilling hole, changing of objects 20
drilling hole, setting of initial size 24
DVI format of manual 31

E

element, an example 9
element, an overview ool 3
element, color........... ... i i, 16
element, command 14, 16
element, display names of 6, 21
element, fileformat..............l 29
element, files.......... il 14, 16
element, loading to buffer...................... 13
element, move name of 25
entering user commands. 12
erasing objects........ il 7
example files...... oo 9
example of buffer handling 10
example of connection lists..................... 12
example of copying............... 10
example of element handling 9
example of line handling 8
example of loading............ o 11
example of loading an element file.............. 10
example of moving........... oL 10
example of pastebuffer handling................ 10
example of pin handling........................ 10
example of polygon handling 8
example of printing oL 11
example of rectangle handling................... 8
example of savingo 11
example of text handling........................ 9
example of via handling......................... 9
eXIt . 13, 23

Index of Concepts

F

file format, element data....................... 29
file format, font data........................... 30
file format, layout data............. 27
file formats i 25
file formats, basic types............ 26
file load command................ 14, 17
file save command............. 15, 19
file, popup menu.............ooiiiiiiiiiii 6
font command.................. 14, 17
font file, format ofol 30
font files ... 14, 17
font, an overview......... ... o oo 3
font, used for pin names........................ 18
format of element files, 29
format of font files.............. 30
format of layout files............ 27
FreeBSD.....c. 33

G

grid ..o 6, 16, 17
grid, absolute and relative................... 6, 21
grid, display 6, 21
grid, setting of 24
BIOUPS - e ettt et et e et e 14, 17

H

Hewlett Packard 32
how tostart i 4
HP ..o 32

Imakefile..........oo 31
Indigo ... 33
infofile........ooiiii 31
inputfield, position of ool 5
inputfield, saving entered command-line 15, 19
inputfield, start user input 21
install, how to i 31

K

key translations..........ol 20
keyboard bell oL 15, 19

38
L
layers, an overview........... oo 3
layers, changing active one 5
layers, colors........ ... 17
layers, groupscoouiiiiiiii i 14, 17
layers, switching on/off............ L 5
layout files...........ooovviii... 14, 15, 17, 19
layout files, format of 27
layout files, saving ofl 13
layout objects, an overview...................... 2
layout size il 15, 20
layout, loading a........... i 13
layout, loading to buffer................ 13
layout, merging a............ol 13
layout, printing a oL 23
layout, start a new. ... 23
length of a pin name 15, 18
length of outputline............................ 14
line clipping ... 14
linelength....... il 16
lines, an example. ... 8
lines, an OVerviewcooeiiiiinnnnnnnnnnn. 4
lines, clipping to 45 degree 21
lines, setting of initial size...................... 24
lines, SIZ€vvvii 18
Linux.....ooo i i 33
list of connections.ccoiiiiiiiiia., 16
loading a layout to buffer 13
loading elements 14, 16
loading elements to buffer...................... 13
loading files...........co i i 21
loading fonts oL 14, 17
loading layouts 13, 14, 17
loading symbols.......... L. 14, 17
loading, an example.......... 11
log Windowooiiiiiiiii i 7,14, 19
M
M o e 16
m4, preprocessing example files.................. 9
make 32
Makefileo 31
manualsouiiii e 31
MEdIA. .ttt e 18
media margin.......... oo 18
media, size of 11
INEIIUS & ¢ v vt ettt et e e et 6
merging layouts......... oL 13
IMNESSAZES ¢ et vttt 7,14, 19
mirroring printout ool 11
mode selection oL 6
mode, selecting of 22
move an object i 25
moving printout oo oo 18

moving, an example............. oL 10

Index of Concepts

N

name of an element 21
name, change an objects 20
namelength of pins........... 15, 18
NetBSD ..o 33

@)

object, change name of 20
object, changing the size of an................... 8
object, copy an oo 25
object, creatingan...........o L 8
object, drawing and removing 7
object, move an.......... ...l 25
object, removing an 8, 25
object, selecting an............... ... o 7
objects, popuUp menu...........cooovviiiiiiia.... 7
off limit color........... ... i 18
offset of pinnames................. 18
offset of pinout................ L. 18
offset of printout L 11, 18
OpenWindowso 33
operation modes, selecting of 22
outputline, length of 14

P

pastebuffer, an example........... 10
pastebuffer, popup menu........................ 7
pastebuffer, selecting a.............. 23
path for element files........................... 16
path for font files oL 17
path for layout files.......... 17
PCUNIX. ..o 33
pin color. ... 18
pin, name of i 15, 18
pinout of elements 7
pinout, display of 21
pinout, font to display L 18
pinout, zoomfactor of display............... 15, 18
pins, an example....... o oo 10
pointer, moving of i 22
polygon point, go back to previous............. 23
polygon, an example 8
polygon, an overviewo, 4
polygon, closing a........ ..o, 23
POPPING UP MENUS « .« vt vvvvtetteeeeeeeeeeeeeenn.. 6
postprocessing layout data.................. 15, 19
PostScript ..o 11
preprocessing element data 14, 16
preprocessing font data..................... 14, 17
preprocessing layout data................... 14, 17
preventing loss of data.................. 11, 15, 19
print command o oo 11
print media i 11, 18
print offset........ 11
printing......... .. oo 18

printing a layout............ o il 23

39
printing offset........... i 18
printing, an example oL 11
problems....... 32
Q
QUIL . e 13, 23
R
TECOVET ettt ettt e ettt eaas 24
rectangle, an example oo 8
redrawing layout............. L 21
refreshing layout L 21
release, current oo il 15
removing connectionso 25
removing objects........... oL 7, 8,25
removing selected objects 24
reseting found connections.............. 15, 19, 21
TESOULCES . ot v vttt ettt ee et 16
rotating a buffer L 23
rotating printout............ ... o ool 11
S
saving connectionsoouuieinnn. 24
saving files...... i 24
saving found connections....................... 21
saving last entered user command 15, 19
saving layouts............... 11, 13, 15, 19
saving, an example........... 11
scaling a printoutol 11
scanning connections................ 21
SCO . 33
scrolling 25
searching connections 21
searchpath for element files..................... 16
searchpath for font files........................ 17
searchpath for layout files...................... 17
selected object, removing an 24
selected objects, changing size................... 7
selected objects, removing.............. 7
selecting a buffer............ 23
selecting anew mode................ 6
selecting objects......... .o it 7,24
selectiono 19, 24
selection, an example 12
selection, popup menu....................ooo.... 7
SGI. 33
signal....... 20
Silicon Graphicsoo i 33
sizeofalayout............ L 15, 20
size of lines 18
Size of Vias.ouuii 19
sizes, changing of objects....................... 20
SI1Z€S, POPUP TENU .« o\ v ettt et et eaeenneenn 7
SOlariS . . 33
speaker volume............... ... ool 15, 20

Index of Concepts

start user input........... .. .ol 21
starting a new layout 23
starting Pcb...... ..o 13
status informationo oL 5
strings, an example o oo 9
strings, an overview oo 4
SUN. .t 33
SYmbOIS . .. 14, 17
symbols, an overview......... oL 3

T

temporary files L 11, 15, 19
TeX, problems 34
texinfo file........ ... i 31
text, an example........... 9
text, an overview.......... ... o oo 4
text, editing o i 7
thickness of lines............... 18
thickness of objects L. 8
thickness of viaso 19
thickness, changing of objects.................. 20
translations o il 20, 25
troubleshooting oL 32

UNAO. .« 24
UNdo, POPUP MENU .+« et vt veeeeeeeeeeeeeeenenn. 7
unix command 14, 15, 16, 17, 19
unselect objects........... L 24
USer COmMMANAS .« .. .vvet ettt e e 12

USET INPUL « . 25

40
\Va
Version, Currentc.ooiiiiiiiiii... 15
vias, an example o oo 9
Vias, N OVEIVIEWttt ittt 3
vias, COlOT ... 19
vias, setting of initial size 24
VIAS, SIZE. . vttt e 19
volume of speaker 15, 20
X
G 15
X11 default translations........................ 25
X111 TESOUTCES .« v e vveteee e et e e e 16
X11 translations 20
X11, problems ..o 34
xmkmf. ..o 31
Z
zoom of drawing window....................... 20
zoom of pinout window..................... 15, 18
zoom, settingol 6
zoom, setting ofl 24

Table of Contents

CopYINg . ..o 1
History 2
1 Introduction....................... 3
1.1 Symbols. ..o 3
12 VA . o 3
1.3 Elements 3
1o LaAYerS . oo 3
1 LAneS . oo 4
1.6 POLygomsoonuiiii 4
1T Lt e 4
2 Getting Started.................... L 5
2.1 The Application Window, 5
2.1.1 The Statusline and Input-field 5
2.1.2 The Control Panel........... i 5
2.1.3 The Mode Selectors.o, 6
2.1.4 Drawing Area....... ...t 6
2.1 MENU. oot 6

2.2 Log WIndow.t 7
2.3 Drawing and Removing Basic Objects................, 7
2.3 LANeS .ot 8
2.3.2 Polygons and Rectangles............. i 8
2.3.3 Tt et 9
234 VaaS . o 9
2.3.5 Elementsiiii 9
2.3.6 Pastebuffer......... 10

2.4 Moving and COpYINgouuutti e 10
2.5 Loading and Savingc.ooeiiiiiiiiiiiii i 11
2.6 Printing. e 11
2.7 Connection Lists i 12
2.8 SeleCtiont 12
3 User Commands................................ 13
4 Command-Line Options 14
4.1 OptIoNS .o oo 14

4.2 Special Options. ..ot 15

5 X111 Interface........ 16

5.1 Non-Standard X11 Application Resources...................... 16
5.2 ACHIONS. . ottt 20
5.3 Default Translations....... ..ot 25
6 File Formats........, 26
6.1 Basic Typest 26
6.2 Layout File Format......... i 27
6.3 Element File Format 29
6.4 Font File Format 30

Appendix A Installation and Troubleshooting .. 31

A.1 Compiling and Installing.............., 31
A.1.1 Editing the Imakefile............, 31

A12 ManualS ... 32

A.1.3 Compiling the Packageo il 32

A.2 Troubleshootingoiiiiii e 32
A.2.1 HP Series 300, 700 and 8x7 with X-Terminal (R5)........ 32

A.2.2 Sun Sparc Station IT........o .. 33

A.2.3 Silicon Graphics Indigo.......... ... 33

A24 SCO UnIX o\ttt e e 33

A2 LUK, .. o 33

A.2.6 FreeBSD and NetBSD........ 34

A.2.7 Problems related to X11 34

A.2.8 Problems related to TeX i, 34
Index of Resources..................cooiiiiiiia... 35
Index of Actions, Commands and Options....... 36

Index of Concepts.................................. 37

	Copying
	History
	1 Introduction
	Symbols
	Vias
	Elements
	Layers
	Lines
	Polygons
	Text

	2 Getting Started
	The Application Window
	The Statusline and Input-field
	The Control Panel
	The Mode Selectors
	Drawing Area
	Menu

	Log Window
	Drawing and Removing Basic Objects
	Lines
	Polygons and Rectangles
	Text
	Vias
	Elements
	Pastebuffer

	Moving and Copying
	Loading and Saving
	Printing
	Connection Lists
	Selection

	3 User Commands
	4 Command-Line Options
	Options
	Special Options

	5 X11 Interface
	Non-Standard X11 Application Resources
	Actions
	Default Translations

	6 File Formats
	Basic Types
	Layout File Format
	Element File Format
	Font File Format

	A Installation and Troubleshooting
	Compiling and Installing
	Editing the Imakefile
	Manuals
	Compiling the Package

	Troubleshooting
	HP Series 300, 700 and 8x7 with X-Terminal (R5)
	Sun Sparc Station II
	Silicon Graphics Indigo
	SCO Unix
	Linux
	FreeBSD and NetBSD
	Problems related to X11
	Problems related to TeX

	Index of Resources
	Index of Actions, Commands and Options
	Index of Concepts

